--- title: "The 7-Habits Of Good Data Scientists" description: "1 - Ain't no homogeneityAsplen-Taylor suggests that the first thing we need to realize is that the data scientist's role is never homogenous ... 5 - The governator factorIt’s no surprise to see data g" type: "news" locale: "en" url: "https://longbridge.com/en/news/13007573.md" published_at: "2020-05-01T07:00:21.000Z" --- # The 7-Habits Of Good Data Scientists > 1 - Ain't no homogeneityAsplen-Taylor suggests that the first thing we need to realize is that the data scientist's role is never homogenous ... 5 - The governator factorIt’s no surprise to see data governance and data quality also called out in this list of top-7 traits ... He says that, for the most part, data scientists are generally inexperienced (compared to many other long-established IT roles) and so have probably not been in the job that long — hence the view that they need to be managed ![Front cover image of The State of Open Data Histories and Horizons.](https://imageproxy.pbkrs.com/https://specials-images.forbesimg.com/imageserve/5eabc874228117000681e837/960x0.jpg/query-Zml0PXNjYWxl?x-oss-process=image/auto-orient,1/interlace,1/resize,w_1440,h_1440/quality,q_95/format,jpg) There’s one sure thing you can say about data science — it’s a lot of things. Data science is not necessarily one single thing, skillset or methodology. This is why data science is always said to be an ‘interdisciplinary branch’ of science that combines mathematics, human behavioral and workflow studies, flexible use of logic systems and a core employment of algorithms. This makes being a data scientist pretty hard work, as if algorithmic logic wasn’t already pretty tough. More than just data analytics, more than just big data insight, more than just the ability to handle new streams of raw unstructured data and more than just knowing how to drive a database while blindfolded, data scientists have to understand business and be flexible super-performers. So what core attributes make a good data scientist? Simon Asplen-Taylor is interim chief data officer (CDO) and founder at data analytics advisory company Datatick. He has previously served at casino and online gaming company Rank Group where he and his team have made use of WhereScape technologies for data science centric work, using the WhereScape’s data warehouse automation & big data software. ## 1 - Ain't no homogeneity Asplen-Taylor suggests that the first thing we need to realize is that the data scientist's role is never homogenous. Different skills are required for different tasks in different roles in different ‘digital workflows’ in different industry verticals in different world markets. Today In: Cloud - Big Atoms Make Small, Super-Sensitive Quantum Receivers - Google's Top Quantum Scientist Explains In Detail Why He Resigned - IBM Issues A Public Challenge To Program Its Quantum Computers ## 2 - Data is a business thing He advises that organizations who want to embrace data science competently need to have a data strategy that is aligned to the business goals - and, crucially, it needs to be written by a ‘business savvy’ chief data officer (CDO) who can align all the capabilities of data to the business - increasing revenues, reducing costs, reducing risk, increasing customer and employee satisfaction. ## 3 - Data scientists are experimental “The work of data scientists is, by definition, experimental. They need to be allowed to experiment and the outcomes may or may not be successful, but do enough experiments in the right areas... and you will find the value,” said Asplen-Taylor. “Considering problem solving experimentation further, data scientists need to follow not to lead i.e. they need to be given a problem to fix, which means they need business analysts to define the problem… and, after their experimentation phase, they need someone to test the outcome of their projects, validate the results (so they are not marking their own homework) and they need IT people who will put their models into a production environment… and to then document them (which is key from a data privacy perspective - ensuring that what they are doing is transparent) and support the models.” ## 4 - This is cowboy (person) country Data scientists call the corralling process of bringing different data sets together ‘data wrangling’ in homage to the cattle corralling process that cowboys (now, in 2020, cowpersons, obviously) do out on the range. Asplen-Taylor explains that the reason he and his coworkers saddle up in this way is that if data sets are not engineered properly and ‘productionized’ so that they can be run every day, then they will fail. “The data sets need to be built, automated and deployed to an environment where the data scientists can access them. The vast majority of companies' data sources that are valuable for generating value are within their existing structured systems - so data scientists should first focus their attention on using this data. As the function matures then they can go after different more elusive data sets … but it’s not the starting point,” he said. ## 5 - The governator factor It’s no surprise to see data governance and data quality also called out in this list of top-7 traits. This discipline sits at something of an adjunct to the data scientist i.e. an organization with a fully-fledged IT department should have separately defined data quality team, but the data scientists should know who they are and how competently they will be able to act. ## 6 - Clear and present process “There needs to be a clear process for Data Science so that people in the business know how the projects work. A good industry wide process exists - it's called the CRISP-DM life cycle (Chapman, Clinton, Kerber, et al, 1999), explained Asplen-Taylor. “It was first set up for data mining, one aspect of data science, but can be applied to all. In this way everyone knows the stages of the lifecycle and timescales and resources can be applied. Today people think it’s just magic, it isn’t.” ## 7 - Company-wide mentality As a final factor in this list, Asplen-Taylor says that data scientists need to work with a data architecture that is company-wide. If data scientists define their own architecture and it’s not wholly integrated across the business then they will duplicate much of what has been done already. That's why the software engineering team (i.e. the programmer/developers) needs to build fast and automate, working closely with the data science team. “If all of the above does not happen then the data science people will revert to what is easiest i.e. they will compete with existing Business Intelligence (BI) teams, build their own reports and dashboards and do very little actual science. Companies already know how to do BI and reporting well, and it's not something data scientists should get into. ## It’s early days, still As a parting comment, Asplen-Taylor issues a small plea. He says that, for the most part, data scientists are generally inexperienced (compared to many other long-established IT roles) and so have probably not been in the job that long — hence the view that they need to be managed carefully by the CIO, CTO or other C-suite ‘head suit’. Your organization’s IT department could now be developing this role, so just remember… it’s not rocket science, it’s data science rocketing. ![Simon Asplen-Taylor head and shoulders photo.](https://imageproxy.pbkrs.com/https://specials-images.forbesimg.com/imageserve/5eabc70a9d04a700067fd455/960x0.jpg/query-Zml0PXNjYWxl?x-oss-process=image/auto-orient,1/interlace,1/resize,w_1440,h_1440/quality,q_95/format,jpg) ## Related News & Research | Title | Description | URL | |-------|-------------|-----| | 全球人工智慧峯會呼籲打造安全可信強健 AI | 在新德裡舉行的全球人工智慧峯會閉幕,86 個國家及 2 個國際組織發布聯合宣言,呼籲發展安全、可信且強健的 AI。會議討論生成式 AI 的影響,強調節能 AI 系統的重要性,並提出自願性倡議以整合國際 AI 研究能力。宣言指出,AI 的益處 | [Link](https://longbridge.com/en/news/276518719.md) | | 美財政部讓步,擬修訂主權財富基金税收提案,此前遭私募業警告 | 美國財政部正就一項針對主權財富基金和公共養老基金徵税方式進行全面改革的提案作出讓步。相關提案此前由美國國税局提出,擬更新税法第 892 條,將這些基金持有的多數美國債務投資歸為商業活動,這將令其面臨被徵税的風險。此前,私募信貸和私募股權公司 | [Link](https://longbridge.com/en/news/276491732.md) | | 郵輪運營商嘉年華公司計劃統一其雙重上市結構 | 嘉年華公司宣佈計劃統一其在紐約和倫敦的雙重上市,並將遷址至百慕大。英國上市的嘉年華公司將成為全資子公司,母公司將在紐約證券交易所以 “Carnival Corporation Ltd” 進行交易。該公司目前總部位於巴拿馬,報告了超過華爾街預 | [Link](https://longbridge.com/en/news/276491689.md) | | 特朗普暗示違法徵收的關税不退了,美財長稱今年關税收入將 “基本保持不變” | 美國總統特朗普暗示不會退還被最高法院裁定違法的關税,預計 2026 年關税收入將保持不變。特朗普計劃簽署行政令,對全球商品加徵 10% 進口關税,取代被推翻的關税。財長貝森特表示,政府將利用替代法律權力維持關税收入,強調國家安全和財政收入不 | [Link](https://longbridge.com/en/news/276494362.md) | | SK 海力士高盛電話會:所有客户需求都無法滿足,今年存儲價格持續上漲 | SK 海力士在高盛電話會上釋放強烈信號:存儲行業已全面進入賣方市場。受 AI 真實需求驅動及潔淨室空間受限影響,今年存儲價格將持續上漲。公司透露目前 DRAM 及 NAND 庫存僅剩約 4 周,且沒有任何客户能完全滿足需求。隨着 2026 | [Link](https://longbridge.com/en/news/276505903.md) | --- > **Disclaimer**: This article is for reference only and does not constitute any investment advice.